标签: 人工智能

快速训练猫狗声音分类模型

本文介绍了如何使用PyTorch和macls库快速进行声音分类训练与推理。首先,通过Anaconda创建Python3.11虚拟环境,并安装PyTorch 2.5.1 GPU版本及macls库。接着,准备数据集,提供下载链接或自定义格式。训练部分仅需三行代码即可完成模型训练、优化和保存。推理环节则加载预训练模型并进行预测。框架支持多种声音分类模型,方便不同场景需求。

阅读全文
快速使用MASR V3版不能语音识别框架

这个框架看起来非常全面且易用,涵盖了从数据准备到模型训练再到推理等多个环节。为了帮助读者更好地理解和使用该框架,我会对每个部分进行详细解释,并提供一些示例代码。 ### 1. 环境搭建 首先需要安装必要的依赖包。假设你已经创建了一个虚拟环境并激活它: ```sh pip install paddlepaddle==2.4.0 -i https://mirror.baidu.com/pypi/

阅读全文
快速使用PPASR V3版不能语音识别框架

这个详细介绍展示了如何使用PaddleSpeech框架进行语音识别任务的开发与部署过程。以下是对你提供的信息的一些补充和建议: 1. **安装环境**:确保你的环境中已经安装了必要的依赖项,包括PaddlePaddle、PaddleSpeech等库。可以通过pip命令来安装这些库。 2. **数据预处理**: - 你可能需要对原始音频进行预处理步骤,如采样率调整、噪声去除等。

阅读全文
基于大语言模型实现文本端点检测

本文介绍了使用大语言模型进行文本端点检测的方法,以改进语音对话中的语音活动检测(VAD)。通过训练一个微调后的模型来预测句子是否完整,可以更准确地判断用户的意图。具体步骤包括: 1. **原理与数据准备**:利用大语言模型的文本生成功能,基于预定义的数据集和特定格式进行微调。 2. **微调模型**:使用LLaMA-Factory工具进行训练,并选择合适的提示模板及优化后的数据格式。 3. **

阅读全文
基于Pytorch实现的说话人日志(说话人分离)

本文介绍了基于Pytorch实现的声纹识别框架(`VoiceprintRecognition_Pytorch`)的说话人日志功能,支持多种先进的模型和数据预处理方法。通过执行`infer_speaker_diarization.py`脚本或使用GUI界面程序,可以对音频进行说话人分离并显示结果。输出包括每个说话人的起止时间和身份识别信息(需先注册)。此外,文章还提供了在Ubuntu系统中解决中文名

阅读全文
轻松识别几个小时的长音视频文件

本文介绍了搭建一个长语音识别服务的方法,使其能够处理几十分钟甚至几个小时的音频或视频。首先,需要将文件夹上传至服务器并执行编译、权限修改和启动Docker容器命令来部署服务。测试显示服务可用后,可以使用WebSocket接口或HTTP服务进行交互。 HTTP服务提供了网页界面,支持多种格式音视频上传及录制识别功能,并返回包含每句话开始和结束时间戳的文本结果。此服务简化了长音频识别流程,提高了用户

阅读全文
实时指令唤醒

本文介绍了实时指令唤醒程序的开发与使用,包括安装环境、指令唤醒、微调模型等步骤。项目基于Anaconda 3和Python 3.11运行,并依赖PyTorch 2.1.0及CUDA 12.1。用户可通过调整`sec_time`和`last_len`参数来定制录音时间与长度,同时在`instruct.txt`添加指令进行个性化设置。 程序通过`infer_pytorch.py`或`infer_on

阅读全文
语音指令控制坦克大战

本文介绍了通过语音指令控制坦克大战游戏的程序开发过程,包括安装环境、启动游戏和微调指令模型等步骤。 首先,项目使用Anaconda 3、Windows 11、Python 3.11及相应库进行开发。用户可调整`main.py`中的参数,如录制时间和数据长度,并在`instruct.txt`添加新指令并编写处理函数启动游戏。 其次,通过运行`record_data.py`录制指令音频,并生成训练

阅读全文
一键运行大语言模型服务,搭建聊天应用

本文介绍了一个基于Qwen-7B-Int4模型的本地大语言模型聊天服务搭建方法。首先,需安装GPU版本PyTorch及其他依赖库。接着,在终端执行`server.py`启动服务。该服务支持Windows和Linux系统,并在显存要求较低的情况下(8G显卡)可流畅运行。 此外,还提供了一个Android应用源码,通过修改服务地址并使用Android Studio打开其中的`AndroidClien

阅读全文
识别准确率竟如此高,实时语音识别服务
2023-10-21 19 阅读 语音 Pytorch 语音识别 人工智能

本文介绍FunASR语音识别框架的安装配置和应用部署。首先,需安装Pytorch及相关依赖库,CPU版本可通过`conda install pytorch torchvision torchaudio cpuonly -c pytorch`命令完成;GPU版则使用`conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c p

阅读全文
FunASR语音识别GUI界面应用

本文介绍了一个基于FunASR开发的语音识别GUI应用,支持本地音频、视频文件的识别及录音识别。该应用包含短音频、长音频(含无时间戳和带时间戳)识别功能,并能播放音频文件。 安装环境需PyTorch(CPU/GPU)、FFmpeg、pyaudio等依赖库。使用时执行`main.py`,界面提供四个选项:短语音识别、长语音识别、录音识别及播放功能。其中长语音识别分为两种模型,一种拼接输出,另一种显

阅读全文
基于Pytorch实现的声纹识别系统

这个项目提供了基于PaddlePaddle的声音识别实现,主要采用了EcapaTDNN模型,并集成了语音识别和声纹识别的功能。下面我会总结项目的结构、功能以及如何使用这些功能。 ## 项目结构 ### 目录结构 ``` VoiceprintRecognition-PaddlePaddle/ ├── docs/ # 文档 │ └── README.md # 项目说明文档

阅读全文
基于PaddlePaddle实现的声纹识别系统

这个项目展示了如何使用PaddlePaddle进行说话人识别(声纹识别),它包括了从数据准备、模型训练到实际应用的完整流程。项目的结构清晰,代码注释详尽,适合学习和参考。以下是对你提到的一些关键点的补充说明: ### 1. 环境配置 确保你已经安装了必要的依赖库。如果使用的是TensorFlow版本或PyTorch版本,请按照对应的教程进行环境配置。 ### 2. 数据准备 项目中的`data

阅读全文
使用VAD将长语音分割的多段短语音

本文介绍了基于深度学习实现的语音活动检测(VAD)工具YeAudio。首先安装库命令为`python -m pip install yeaudio -i https://pypi.tuna.tsinghua.edu.cn/simple -U`,并使用如下代码片段进行语音分割: ```python from yeaaudio.audio import AudioSegment audio_seg

阅读全文
基于PaddlePaddle训练中文标点符号模型

这个项目提供了一个完整的流程来训练和使用一个用于在中文文本中添加标点符号的模型。下面是整个过程的总结: 1. **环境准备**: - 确保安装了必要的库,如 `paddlepaddle-gpu` 和 `PaddleNLP`。 - 配置训练数据集。 2. **数据处理和预处理**: - 对输入文本进行分词,并将标点符号标签化。 - 创建训练集、验证集和测试集分割。 3.

阅读全文
基于PaddlePaddle实现的语音情感识别

你提供的内容是一个基于PaddlePaddle的语音分类任务的训练和预测过程。接下来,我会为你提供一个更详细、完整的代码示例,并解释每个部分的功能。 ### 一、环境准备 确保已经安装了必要的依赖库,包括PaddlePickle版本的`paddle`等。可以使用以下命令进行安装: ```bash pip install paddlepaddle==2.4.1 ``` ### 二、代码实现

阅读全文
使用PaddlePaddle轻松实现语音合成

本文介绍了使用PaddlePaddle进行语音合成的实现方法,包括简单的代码示例、GUI界面操作以及Flask Web接口。首先通过简单程序实现了文本到语音的基本功能,利用声学模型和声码器模型完成合成过程,并将结果保存为音频文件;其次介绍了`gui.py`界面程序用于简化用户操作体验;最后展示了使用`server.py`提供的Flask Web服务,能够供Android应用或小程序调用以实现远程语

阅读全文
使用PaddlePaddle搭建一个可以识别数千中动物

本文介绍了使用PaddlePaddle实现动物识别的项目。首先,通过几行代码即可完成动物识别任务;其次提供了GUI界面操作,方便用户上传图片进行识别;最后,通过Flask Web接口支持Android调用,实现了跨平台的应用。该项目包括模型路径、图片读取和预测结果输出等细节,并附有运行截图展示其实现效果。

阅读全文
基于Pytorch实现的EcapaTdnn声纹识别模型

这个项目展示了如何使用PaddlePaddle实现语音识别功能,具体包括声纹对比和声纹注册。下面是对主要内容的总结和一些改进建议: ### 1. 项目结构与功能 - **声纹对比**:通过比较两个音频文件的声音特征来判断是否为同一个人。 - **声纹注册**:将新用户的语音数据存储到数据库中,并生成对应的用户信息。 ### 2. 技术栈 - 使用PaddlePaddle进行模型训练和预测。 -

阅读全文
基于PaddlePaddle实现的EcapaTdnn声纹识别模型

这个项目是一个基于PaddlePaddle的声纹识别系统。它涵盖了从数据预处理、模型训练到声纹识别和对比的应用场景,适用于声纹登录等实际应用。以下是对该项目的详细解析: ### 1. 环境准备与依赖安装 首先确保已经安装了PaddlePaddle以及其他的依赖库如`numpy`, `matplotlib`等。可以通过如下命令进行安装: ```bash pip install paddlepa

阅读全文
PPASR流式与非流式语音识别

这段文档介绍了如何使用PaddlePaddle实现的语音识别模型进行部署和测试,并提供了多种方式来执行和展示该模型的功能。以下是对文档内容的总结及解读: ### 1. 引言 - 概述了基于PaddlePaddle的语音识别模型,包括短语音和长音段的识别。 ### 2. 部署方法 #### 2.1 命令行部署 提供了两种命令来实现不同的部署方式: - `python infer_server.

阅读全文
基于PaddlePaddle实现的快速人脸识别模型

该项目基于ArcFace和PP-OCRv2模型,开发了一个小型高效的人脸识别系统。训练数据集为emore(包含85742个人、5822653张图片),测试则使用lfw-align-128数据集。 项目提供完整代码及预处理脚本,通过执行`create_dataset.py`将原始数据整理至二进制文件格式,以提高训练效率。模型训练与评估分别由`train.py`和`eval.py`控制。预测功能支持

阅读全文
基于Pytorch实现的快速人脸识别模型

该项目旨在开发小型模型,高识别准确率且推理速度快的人脸识别系统。训练数据来自emore数据集(582万张图片),测试则使用lfw-align-128数据集。项目结合了ArcFace损失函数和MobileNet,并通过Python脚本实现。训练模型的过程包括数据准备、训练与评估,所有代码可在GitHub上获取。 训练模型时,执行`train.py`命令即可开始训练过程;而性能的验证则通过运行`ev

阅读全文
基于Pytorch实现的声音分类

该代码主要基于PaddlePaddle框架,用于实现一个基于声学特征的语音识别系统。项目结构清晰,包含了训练、评估和预测等功能模块,并且提供了详细的命令行参数配置文件。以下是项目的详细分析及使用说明: ### 1. 项目结构 ``` . ├── configs # 配置文件目录 │ └── bi_lstm.yml ├── infer.py # 声学模型推理代码 ├── recor

阅读全文
我的新书,《PaddlePaddle Fluid 深度学习入门与实战》已出版!

本书详细介绍了如何使用PaddlePaddle进行深度学习开发,涵盖从环境搭建到实际项目应用的全过程。内容包括环境搭建、快速入门、线性回归算法、卷积神经网络与循环神经网络实战、生成对抗网络和强化学习等。此外,还讲解了模型保存与使用、迁移学习以及移动端框架Paddle-Lite的应用等。本书适合初学者入门,并且能够帮助解决实际问题,如花卉类型识别、新闻标题分类等项目。书中所有代码均经过测试,配套资源

阅读全文
基于PaddlePaddle 2.0动态图实现的CRNN文字识别模型

本文档介绍基于PaddlePaddle 2.0动态图实现的CRNN文字识别模型。该模型通过CNN提取特征,RNN进行序列预测,并使用CTC Loss计算损失,适用于不规则长度图片输入。 **训练与数据准备:** 1. **环境配置**: 需要安装PaddlePaddle 2.0.1和Python 3.7。 2. **数据集生成**: - 使用`create_image.py`脚本自动生成验

阅读全文
PPASR中文语音识别(入门级)

感谢你的详细介绍!为了进一步帮助大家理解和使用这个基于CTC的端到端中英文语音识别模型,我将从几个方面进行补充和完善: ### 1. 数据集及其处理 #### AISHELL - **数据量**: 约20小时中文发音。 - **特点**: 包含普通话标准发音和部分方言。 #### Free ST Chinese Mandarin Corpus - **数据量**: 大约65小时中文发音。 -

阅读全文
基于insightface实现的人脸识别和人脸注册

这个代码实现了一个基于深度学习的人脸识别系统,使用了InsightFace框架。它包含了人脸检测、特征提取和人脸识别的功能,并提供了注册新用户功能。下面是对代码的详细解释: ### 1. 导入必要的库 ```python import cv2 import numpy as np ``` ### 2. 定义 `FaceRecognition` 类 这个类包含了所有与人脸识别相关的函数。

阅读全文
基于PaddlePaddle实现的目标检测模型PP-YOLOE

这段文档详细地介绍了如何使用 PaddlePaddle 实现目标检测模型 PP-YOLOE 的训练、评估、导出以及预测过程,并提供了多种部署方式,包括 Inference 预测接口、ONNX 接口和 Android 设备上的预测。以下是对各个部分的总结: ### 1. 训练 - **单卡训练**:使用 `python train.py --model_type=M --num_classes=8

阅读全文
基于Paddle Lite在Android手机上实现图像分类

感谢您分享这个基于Paddle Lite进行图像分类的Android应用开发实例。您的项目不仅涵盖了如何从图片中获取类别,还介绍了通过摄像头实时识别图像的方法,这使得用户可以在实际应用场景中快速了解被拍摄物体的信息。 下面我将对您提供的内容做进一步优化和补充,并提供一些建议来改进用户体验或提高代码效率: ### 1. 项目结构与资源管理 确保项目中的文件结构清晰(如:`assets/image

阅读全文
基于Pytorch实现的流式与非流式语音识别

### 项目概述 该项目是基于PyTorch实现的一个语音识别系统。通过使用预训练的模型和自定义配置,可以对输入的音频文件进行识别并输出相应的文本结果。 ### 安装依赖 首先需要安装必要的库。可以在终端或命令行中运行以下命令: ```bash pip install torch torchaudio numpy librosa ``` 如果需要使用语音合成模块,则还需安装`gTTS`和

阅读全文
基于Pyramidbox实现的大规模人脸检测

根据您提供的代码和描述,这是一个基于PyTorch的面部检测模型的实现。该模型使用了自定义的推理过程来加载图像、进行预处理,并通过模型进行人脸检测。 以下是对代码的一些关键点总结: - **数据预处理**:将输入图像从`HWC`转置为`CHW`格式,调整色彩空间(BGR到RBG),减去均值并缩放。这一步骤是为了匹配训练时的数据格式。 - **模型推理**:使用PaddlePaddle框架

阅读全文
基于PaddlePaddle实现的目标检测模型SSD

### 项目概述 该项目旨在使用 PaddlePaddle 实现 SSD (Single Shot Multibox Detector) 模型进行目标检测任务。SSD 是一种单阶段的目标检测算法,能够实现快速且精确的物体检测。以下是详细的代码和配置文件解析。 --- ### 配置文件 `config.py` 解析 #### 重要参数 - **image_shape**: 输入图像的大小,默

阅读全文
双目摄像头测量距离

这个代码展示了如何使用OpenCV实现基于SGBM(Semiglobal Block Matching)算法的立体视觉深度估计,进而计算出图像中的三维坐标。以下是对代码中关键步骤和参数的详细解释: ### 1. 准备工作 首先导入必要的库: ```python import cv2 import numpy as np ``` ### 2. 读取并预处理图像 加载左眼和右眼的图像,并进行

阅读全文
基于PaddlePaddle实现声纹识别

这个项目展示了如何使用PaddlePaddle实现基于语音识别的声纹识别系统。整个项目涵盖了从模型训练、到推理以及用户交互等多个环节,是一个完整的案例。以下是对你提供的代码和内容的一些补充说明: ### 1. 环境搭建与依赖 确保你的环境中已安装了必要的库: ```bash pip install paddlepaddle numpy scipy sounddevice ``` 对于音频处理

阅读全文
使用Tensorflow实现声纹识别

你的项目提供了一个基于TensorFlow的声纹识别框架,涵盖了数据准备、模型训练和声纹识别等多个步骤。这是一个很好的实践案例,展示了如何将深度学习技术应用于实际问题中。下面我会从几个方面对你的项目进行分析,并给出一些建议。 ### 优点 1. **结构清晰**:项目的代码组织结构较为合理,分为多个模块来分别处理数据、模型训练和声纹识别。 2. **数据处理**:使用`librosa`库读取音

阅读全文
Android使用AIUI快速搭建智能助手
2020-04-18 22 阅读 Android 人工智能 Android

本文介绍了如何快速搭建类似小爱同学的智能助手。首先,通过AIUI(科大讯飞推出的全链路人机交互语音解决方案)创建应用,选择Android平台并开启语义理解功能。然后在技能中添加个性化人设和各种技能,配置兜底回复和语音合成。 接着开发Android应用,下载AIUI SDK并将动态库复制到相应文件夹。修改`aiui_phone.json`中的APPID,并运行项目进行测试。最后展示了一个通过该方法

阅读全文
百度机器学习训练营笔记——问题回答

该代码使用PaddlePaddle构建了一个卷积神经网络来处理CIFAR-10数据集。网络包含3层卷积池化和一层全连接层,没有使用BN层。 **网络结构分析:** 1. 输入图像尺寸为(128, 3, 32, 32)。 2. 第一、二层卷积核大小5x5,第一层输出(128, 20, 28, 28),第二层输出(128, 50, 14, 14);每层卷积输出的参数量分别为1500和25000。

阅读全文
百度机器学习训练营笔记——数学基础

这段内容主要讲解了神经网络的基本概念和一些重要的基础概念,包括但不限于线性回归、梯度下降等算法以及它们的原理与应用。另外还详细解释了反向传播、激活函数(如Sigmoid、Tanh和ReLU)的概念,并通过代码示例进行了图表展示。下面是对这些内容的一个简要总结: 1. **线性回归**:一种简单的机器学习方法,用于预测连续值。 2. **梯度下降**:优化算法之一,用于求解最小化损失函数的参数。

阅读全文
笔者新书出版啦

本书《深度学习实战之PaddlePaddle》由作者分享了从接触PaddlePaddle到完成书籍出版的经历。书中详细介绍了PaddlePaddle框架,并通过手写数字识别等案例,帮助读者掌握实践应用。内容涵盖基本用法、数据集处理、目标检测及服务器端与移动端的应用。本书适合机器学习爱好者和从业人员阅读,亦可作为教学参考书。 作者在学习PaddlePaddle过程中,通过博客分享教程,最终促成书籍

阅读全文
《PaddlePaddle从入门到炼丹》七——强化学习

你的教程详细介绍了如何使用PaddlePaddle实现深度Q网络(DQN)来玩一个小游戏。以下是对你文档的总结和一些补充建议: ### 文档总结 1. **环境搭建**:你已经介绍了如何安装和配置PaddlePaddle,确保可以运行相关的代码。 2. **项目介绍**:详细描述了如何使用PaddlePaddle实现一个简单的强化学习模型来玩一个小游戏(例如Atari游戏)。 3. **代码实

阅读全文
《PaddlePaddle从入门到炼丹》八——模型的保存与使用

### 《PaddlePaddle从入门到炼丹》八——模型保存与加载 在这一章节中,我们将会介绍如何使用 PaddlePaddle 进行模型的保存与加载。保存和加载模型是机器学习项目中的重要步骤之一,它允许我们将训练好的模型用于实际的应用中,或者继续进行优化和微调。 #### 1. 模型保存 为了将训练完成后的模型保存到文件中,我们可以使用 `fluid.io.save_persistable

阅读全文
《PaddlePaddle从入门到炼丹》二——计算1+1

本章介绍了如何使用PaddlePaddle Fluid版本进行简单的张量运算和变量运算。首先,通过`fill_constant()`函数定义了两个形状为[2, 2]的常量张量x1和x2,并赋值为1,然后使用`sum()`函数计算它们的和。接着,创建了一个CPU解析器并初始化参数,最终输出结果[[2, 2], [2, 2]]。之后展示了如何使用变量进行运算,在`variable_sum.py`中定义

阅读全文