标签: 自然语言处理

基于大语言模型实现文本端点检测

本文介绍了使用大语言模型进行文本端点检测的方法,以改进语音对话中的语音活动检测(VAD)。通过训练一个微调后的模型来预测句子是否完整,可以更准确地判断用户的意图。具体步骤包括: 1. **原理与数据准备**:利用大语言模型的文本生成功能,基于预定义的数据集和特定格式进行微调。 2. **微调模型**:使用LLaMA-Factory工具进行训练,并选择合适的提示模板及优化后的数据格式。 3. **

阅读全文
一键运行大语言模型服务,搭建聊天应用

本文介绍了一个基于Qwen-7B-Int4模型的本地大语言模型聊天服务搭建方法。首先,需安装GPU版本PyTorch及其他依赖库。接着,在终端执行`server.py`启动服务。该服务支持Windows和Linux系统,并在显存要求较低的情况下(8G显卡)可流畅运行。 此外,还提供了一个Android应用源码,通过修改服务地址并使用Android Studio打开其中的`AndroidClien

阅读全文
基于PaddlePaddle训练中文标点符号模型

这个项目提供了一个完整的流程来训练和使用一个用于在中文文本中添加标点符号的模型。下面是整个过程的总结: 1. **环境准备**: - 确保安装了必要的库,如 `paddlepaddle-gpu` 和 `PaddleNLP`。 - 配置训练数据集。 2. **数据处理和预处理**: - 对输入文本进行分词,并将标点符号标签化。 - 创建训练集、验证集和测试集分割。 3.

阅读全文
给语音识别文本加上标点符号

本文介绍了在语音识别文本中根据语法添加标点符号的方法,主要分四步:下载并解压模型、安装PaddleNLP和PPASR工具、导入PunctuationPredictor类,并使用该类对文本进行标点符号自动添加。具体步骤如下: 1. 下载模型并解压到`models/`目录。 2. 安装PaddleNLP和PPASR相关库。 3. 使用`PunctuationPredictor`类实例化预测器,传入预

阅读全文
我的新书,《PaddlePaddle Fluid 深度学习入门与实战》已出版!

本书详细介绍了如何使用PaddlePaddle进行深度学习开发,涵盖从环境搭建到实际项目应用的全过程。内容包括环境搭建、快速入门、线性回归算法、卷积神经网络与循环神经网络实战、生成对抗网络和强化学习等。此外,还讲解了模型保存与使用、迁移学习以及移动端框架Paddle-Lite的应用等。本书适合初学者入门,并且能够帮助解决实际问题,如花卉类型识别、新闻标题分类等项目。书中所有代码均经过测试,配套资源

阅读全文