标签: 图像分类
百度机器学习训练营笔记——问题回答
该代码使用PaddlePaddle构建了一个卷积神经网络来处理CIFAR-10数据集。网络包含3层卷积池化和一层全连接层,没有使用BN层。 **网络结构分析:** 1. 输入图像尺寸为(128, 3, 32, 32)。 2. 第一、二层卷积核大小5x5,第一层输出(128, 20, 28, 28),第二层输出(128, 50, 14, 14);每层卷积输出的参数量分别为1500和25000。
阅读全文《PaddlePaddle从入门到炼丹》十一——自定义图像数据集识别
这篇笔记主要介绍了如何使用PaddlePaddle进行图像分类任务的训练和预测,具体包括以下几个部分: ### 1. 准备数据集 作者从一个包含6类水果图片的数据集中提取了240张图片作为训练集,并将其整理为CSV文件格式。 ### 2. 构建模型 使用PaddlePaddle定义了一个简单的LeNet模型结构。该模型包括两个卷积层、两个池化层和全连接层,最后通过Softmax进行分类。 #
阅读全文《PaddlePaddle从入门到炼丹》九——迁移学习
感谢分享这个详细且全面的教程。使用预训练模型确实能够大大提高模型的效果和收敛速度,特别是对于数据量较小的情况。下面我将根据你的代码进行一些优化和补充说明,并提供一些建议。 ### 代码优化 1. **加载和保存模型时的错误处理**:增加对文件操作错误的捕获。 2. **使用 `paddle.static` API**:推荐使用 PaddlePaddle 的静态图 API,因为它在训练和预测中更
阅读全文《PaddlePaddle从入门到炼丹》十——VisualDL 训练可视化
本章节将详细介绍如何使用PaddlePaddle的`VisualDL`工具来进行模型训练过程中的可视化,这有助于更好地理解模型学习的过程和优化效果。以下是详细的教程步骤: ### 一、安装VisualDL 首先需要确保已经安装了PaddlePaddle,并且已经安装了VisualDL。如果尚未安装,可以通过以下命令进行安装: ```bash pip install paddlepaddle-gp
阅读全文PaddlePaddle实现手写藏文识别
这段代码使用了PaddlePaddle框架进行Tibetan MNIST手写数字识别模型的训练、预测和绘图。整个过程可以分为以下几个步骤: 1. **数据集加载**:首先从Kesci平台下载并拆解数据集,然后将原始图片转换为标准化后的灰度图像。 2. **模型定义与训练**: - 定义了一个简单的CNN网络结构。 - 设置了优化器、损失函数和准确率计算方法。 - 使用Padd
阅读全文