2019-11 的文章

百度机器学习训练营笔记——问题回答

该代码使用PaddlePaddle构建了一个卷积神经网络来处理CIFAR-10数据集。网络包含3层卷积池化和一层全连接层,没有使用BN层。 **网络结构分析:** 1. 输入图像尺寸为(128, 3, 32, 32)。 2. 第一、二层卷积核大小5x5,第一层输出(128, 20, 28, 28),第二层输出(128, 50, 14, 14);每层卷积输出的参数量分别为1500和25000。

阅读全文
百度机器学习训练营笔记——数学基础

这段内容主要讲解了神经网络的基本概念和一些重要的基础概念,包括但不限于线性回归、梯度下降等算法以及它们的原理与应用。另外还详细解释了反向传播、激活函数(如Sigmoid、Tanh和ReLU)的概念,并通过代码示例进行了图表展示。下面是对这些内容的一个简要总结: 1. **线性回归**:一种简单的机器学习方法,用于预测连续值。 2. **梯度下降**:优化算法之一,用于求解最小化损失函数的参数。

阅读全文
基于PaddlePaddle实现的DeepSpeech2端到端中文语音识模型

这个教程详细地介绍了如何使用PaddlePaddle进行语音识别,并提供了一系列的操作指南,帮助开发者从数据准备到模型训练和上线部署。下面是对每个步骤的一个简要总结: 1. **环境配置**:确保开发环境已经安装了必要的软件和库,包括PaddlePaddle。 2. **数据准备**: - 下载并解压语音识别数据集。 - 处理音频文件,如去噪、降采样等。 - 对文本进行

阅读全文