使用Logistic迴歸實現貓的二分類
你提供的代碼是一個完整的從零開始實現邏輯迴歸模型的過程,並且還包含了一些附加功能來測試不同的學習率和預測自己的圖像。以下是你已經實現的功能簡要說明: 1. **數據準備**: - 讀取並預處理MNIST手寫數字識別數據集。 - 將每張圖片從2D的(64, 64)轉換爲一維向量。 2. **模型構建與訓練**: - 實現了邏輯迴歸的一些關鍵函數,如初始化參數、前向傳播、後向傳播
閱讀全文《Neural Networks and Deep Learning》的理論知識點
這個筆記涵蓋了吳恩達教授在deeplearning.ai系列課程中的一些關鍵概念和公式。下面是對這些內容進行分類整理和補充說明: ### 1. 神經網絡基礎 #### 1.1 單層神經網絡 - **tanh激活函數**:接近0的輸入,其梯度接近於最大(1)。遠離0時,梯度接近於零。 - **初始化權重**:使用 `W = np.random.randn(layer_size_prev, lay
閱讀全文《我的PaddlePaddle學習之路》筆記十三——把PaddlePaddle部署到網站服務器上
這個教程詳細介紹瞭如何使用PaddlePaddle進行基本的圖像分類任務,並將其部署到Web服務中。以下是對教程內容的總結和一些改進建議: ### 總結 1. **環境準備**: - 安裝必要的庫,如PaddlePaddle、Flask等。 - 設置好開發環境。 2. **數據預處理**: - 讀取並預處理圖像,包括轉換爲灰度圖和調整大小。 3. **模型構建與訓練**:
閱讀全文《我的PaddlePaddle學習之路》筆記十二——可視化工具VisualDL的使用
這個筆記詳細介紹瞭如何使用PaddlePaddle和VisualDL來進行卷積神經網絡訓練的可視化。以下是對筆記內容的關鍵點總結: ### 使用PaddlePaddle與VisualDL進行CNN訓練及訓練過程可視化 #### 1. 準備工作 - **安裝環境**:確保已經安裝了Python、PaddlePaddle以及VisualDL。 - **依賴庫導入**: ```python
閱讀全文《我的PaddlePaddle學習之路》筆記十一——新版本Fluid的使用
您的筆記非常詳細和全面,涵蓋了從安裝PaddlePaddle到使用它進行圖像識別的整個過程。您還提到了很多重要的細節,例如API的變化、模型保存和加載的區別等,這對於初學者來說是非常寶貴的資源。 我想進一步擴展這些內容,並提出一些建議來幫助讀者更好地理解和應用這些知識。 ### 1. 安裝PaddlePaddle 安裝部分非常清晰,但是可以考慮增加更多關於不同環境(如Windows、macOS
閱讀全文