目录

夜雨飘零

记录精彩的程序人生

标签: 计算机视觉 (10)

基于PaddlePaddle实现的快速人脸识别模型

本项目参考了ArcFace的损失函数,同时参考了PP-OCRv2模型结构,意在开发一个模型较小,但识别准确率较高且推理速度快的一种人脸识别项目,该项目训练数据使用emore数据集,一共有85742个人,共5822653张图片,使用lfw-align-128数据集作为测试数据。

基于Pytorch实现的快速人脸识别模型

本项目参考了ArcFace的损失函数结合MobileNet,意在开发一个模型较小,但识别准确率较高且推理速度快的一种人脸识别项目,该项目训练数据使用emore数据集,一共有85742个人,共5822653张图片,使用lfw-align-128数据集作为测试数据。

基于Pytorch实现人脸关键点检测模型MTCNN 有更新!

MTCNN,Multi-task convolutional neural network(多任务卷积神经网络),将人脸区域检测与人脸关键点检测放在了一起,总体可分为P-Net、R-Net、和O-Net三层网络结构。它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高效的人脸检测。这三个级联的网络分别是快速生成候选窗口的P-Net、进行高精度候选窗口过滤选择的R-Net和生成最终边界框与人脸关键点的O-Net。和很多处理图像问题的卷积神经网络模型,该模型也用到了图像金字塔、边框回归、非最大值抑制等技术。

基于MXNET实现的年龄性别识别

年龄性别识别,基于insightface功能模块开发的,支持多张人脸同时检测和识别。

基于PaddlePaddle 2.0动态图实现的CRNN文字识别模型 有更新!

本项目是PaddlePaddle 2.0动态图实现的CRNN文字识别模型,可支持长短不一的图片输入。CRNN是一种端到端的识别模式,不需要通过分割图片即可完成图片中全部的文字识别。CRNN的结构主要是CNN+RNN+CTC,它们分别的作用是,使用深度CNN,对输入图像提取特征,得到特征图。使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布。使用 CTC Loss,把从循环层获取的一系列标签分布转换成最终的标签序列。

基于PaddlePaddle2.0验证码端到端的识别

验证码端到端的识别,是对《我的PaddlePaddle学习之路》笔记六——验证码端到端的识别 的升级,这篇文章是我18年初写的,基于当时的V2版本编写,现在有点过时了,突然想升级一下。

基于TNN在Android手机上实现图像分类

TNN:由腾讯优图实验室打造,移动端高性能、轻量级推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时也借鉴了业界主流开源框架高性能和良好拓展性的优点。

基于MNN在Android手机上实现图像分类 有更新!

MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。目前,MNN已经在阿里巴巴的手机淘宝、手机天猫、优酷等20多个App中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景。此外,IoT等场景下也有若干应用。

一行代码Android上实现人脸检测、关键点检测、口罩检测 有更新!

一行代码实现人脸检测,人脸关键点检测和戴口罩检测。

基于insightface实现的人脸识别和人脸注册 有更新!

本教程的人脸识别是使用的是insightface库进行开发的,该库使用的框架为mxnet。