记录精彩的程序人生
本项目参考了ArcFace的损失函数结合MobileNet,意在开发一个模型较小,但识别准确率较高且推理速度快的一种人脸识别项目,该项目训练数据使用emore数据集,一共有85742个人,共5822653张图片,使用lfw-align-128数据集作为测试数据。
本章我们来介绍如何使用Pytorch训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。
本章介绍如何使用Pytorch实现简单的声纹识别模型,本项目参考了人脸识别项目的做法Pytorch-MobileFaceNet ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。
MTCNN,Multi-task convolutional neural network(多任务卷积神经网络),将人脸区域检测与人脸关键点检测放在了一起,总体可分为P-Net、R-Net、和O-Net三层网络结构。它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高效的人脸检测。这三个级联的网络分别是快速生成候选窗口的P-Net、进行高精度候选窗口过滤选择的R-Net和生成最终边界框与人脸关键点的O-Net。和很多处理图像问题的卷积神经网络模型,该模型也用到了图像金字塔、边框回归、非最大值抑制等技术。
MASR是一款基于Pytorch实现的语音识别框架,MASR致力于简单,实用的语音识别项目。可部署在服务器,Nvidia Jetson设备,未来还计划支持Android等移动设备。