基于PaddlePaddle2.0验证码端到端的识别
验证码端到端的识别,是对《我的PaddlePaddle学习之路》笔记六——验证码端到端的识别 的升级,这篇文章是我18年初写的,基于当时的V2版本编写,现在有点过时了,突然想升级一下。
在线运行
在线运行:https://aistudio.baidu.com/aistudio/projectdetail/1679868
创建数据列表和词汇表
数据列表是为了方便训练是读取数据的。
import os
import cv2
def createDataList(data_path, list_path):
# 读取所有的图像路径
imgs = os.listdir(data_path)
with open(list_path, 'w', encoding='utf-8') as f:
for img in imgs:
name = img.split('.')[0]
image_path = os.path.join(data_path, img)
# 写入图像路径和label,用Tab隔开
f.write(image_path + '\t' + name + '\n')
createDataList('dataset/train_data/', 'dataset/train.txt')
createDataList('dataset/test_data/', 'dataset/test.txt')
还缺词汇表,执行下面的代码。
with open('dataset/train.txt', 'r', encoding='utf-8') as f:
lines = f.readlines()
v = set()
for line in lines:
_, label = line.replace('\n', '').split('\t')
for c in label:
v.add(c)
vocabulary_path = 'dataset/vocabulary.txt'
with open(vocabulary_path, 'w', encoding='utf-8') as f:
for c in v:
f.write(c + '\n')
解码器
这个好似贪心解码方法,用于解码预测的输出的结果,将PaddlePaddle输出的结果转换为字符串。这里还提供了数据标签转字符串的,和计算字错率的。
%%writefile decoder.py
import Levenshtein as Lev
from itertools import groupby
import paddle
def ctc_greedy_decoder(probs_seq, vocabulary):
"""CTC贪婪(最佳路径)解码器。
由最可能的令牌组成的路径被进一步后处理
删除连续的重复和所有的空白。
:param probs_seq: 每个词汇表上概率的二维列表字符。
每个元素都是浮点概率列表为一个字符。
:type probs_seq: list
:param vocabulary: 词汇表
:type vocabulary: list
:return: 解码结果字符串
:rtype: baseline
"""
# 尺寸验证
for probs in probs_seq:
if not len(probs) == len(vocabulary) + 1:
raise ValueError("probs_seq 尺寸与词汇不匹配")
# argmax以获得每个时间步长的最佳指标
max_index_list = paddle.argmax(probs_seq, -1).numpy()
# 删除连续的重复索引
index_list = [index_group[0] for index_group in groupby(max_index_list)]
# 删除空白索引
blank_index = len(vocabulary)
index_list = [index for index in index_list if index != blank_index]
# 将索引列表转换为字符串
return ''.join([vocabulary[index] for index in index_list])[:4]
def label_to_string(label, vocabulary):
"""标签转文字
:param label: 结果的标签,或者数据集的标签
:type label: list
:param vocabulary: 词汇表
:type vocabulary: list
:return: 解码结果字符串
:rtype: baseline
"""
return ''.join([vocabulary[index] for index in label])
def cer(out_string, target_string):
"""通过计算两个字符串的距离,得出字错率
Arguments:
out_string (string): 比较的字符串
target_string (string): 比较的字符串
"""
s1, s2, = out_string.replace(" ", ""), target_string.replace(" ", "")
return Lev.distance(s1, s2)
数据读取器
这个是用于训练时读取数据的,用数据列表中读取图片和标签,将图片进行预处理,字符串标签转换为整型的标签输入的网络模型中。
%%writefile data.py
import cv2
import numpy as np
from paddle.io import Dataset
# 图像预处理
def process(path):
image = cv2.imread(path)
# 转灰度图
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 统一缩放大小
image = cv2.resize(image, (72, 27))
# 转换成CHW
image = image[np.newaxis, :]
# 归一化
image = (image - 128) / 128
return image
# 数据加载器
class CustomDataset(Dataset):
def __init__(self, data_list_path, voc_path):
super(CustomDataset, self).__init__()
with open(data_list_path, 'r', encoding='utf-8') as f:
self.lines = f.readlines()
with open(voc_path, 'r', encoding='utf-8') as f:
labels = f.readlines()
self.vocabulary = [labels[i].replace('\n', '') for i in range(len(labels))]
self.vocabulary_dict = dict([(labels[i].replace('\n', ''), i) for i in range(len(labels))])
def __getitem__(self, idx):
path, label = self.lines[idx].replace('\n', '').split('\t')
img = process(path)
# 将字符标签转换为int数据
transcript = [self.vocabulary_dict.get(x) for x in label]
img = np.array(img, dtype='float32')
transcript = np.array(transcript, dtype='int32')
return img, transcript
def __len__(self):
return len(self.lines)
模型结构
这个模型类型CRNN,前面使用卷积层提前图像特征,后面用一个GRU,他是LSTM的变种,最后的全连接层,输出的大小为词汇表+1,因为还有一个空格字符,这个是CTC需要的。
%%writefile model.py
import paddle
import paddle.nn as nn
class Model(nn.Layer):
def __init__(self, vocabulary):
super(Model, self).__init__()
self.conv1 = nn.Conv2D(in_channels=1, out_channels=32, kernel_size=3)
self.relu1 = nn.ReLU()
self.bn1 = nn.BatchNorm2D(32)
self.pool1 = nn.MaxPool2D(kernel_size=2, stride=1)
self.conv2 = nn.Conv2D(in_channels=32, out_channels=64, kernel_size=3)
self.relu2 = nn.ReLU()
self.bn2 = nn.BatchNorm2D(64)
self.pool2 = nn.MaxPool2D(kernel_size=2, stride=1)
self.conv3 = nn.Conv2D(in_channels=64, out_channels=128, kernel_size=3)
self.relu3 = nn.ReLU()
self.bn3 = nn.BatchNorm2D(128)
self.pool3 = nn.MaxPool2D(kernel_size=2, stride=1)
self.conv4 = nn.Conv2D(in_channels=128, out_channels=256, kernel_size=3)
self.relu4 = nn.ReLU()
self.bn4 = nn.BatchNorm2D(256)
self.pool4 = nn.MaxPool2D(kernel_size=2, stride=1)
self.conv5 = nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3)
self.relu5 = nn.ReLU()
self.bn5 = nn.BatchNorm2D(256)
self.pool5 = nn.MaxPool2D(kernel_size=2, stride=1)
self.conv6 = nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3)
self.relu6 = nn.ReLU()
self.bn6 = nn.BatchNorm2D(256)
self.pool6 = nn.MaxPool2D(kernel_size=2, stride=1)
self.conv7 = nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3)
self.relu7 = nn.ReLU()
self.bn7 = nn.BatchNorm2D(256)
self.pool7 = nn.MaxPool2D(kernel_size=2, stride=1)
self.fc = nn.Linear(in_features=306, out_features=128)
self.gru = nn.GRU(input_size=256, hidden_size=128)
self.output = nn.Linear(in_features=128, out_features=len(vocabulary) + 1)
def forward(self, x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.relu2(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.relu3(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.relu4(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.relu5(self.bn5(self.conv5(x)))
x = self.pool5(x)
x = self.relu6(self.bn6(self.conv6(x)))
x = self.pool6(x)
x = self.relu7(self.bn7(self.conv7(x)))
x = self.pool7(x)
x = paddle.reshape(x, shape=(x.shape[0], x.shape[1], -1))
x = self.fc(x)
x = paddle.transpose(x, perm=[0, 2, 1])
y, h = self.gru(x)
x = self.output(y)
return x
训练
这就开始训练了。三两下就可以训练完,主要是数据量少。每十轮训练结束都执行一次评估,输出的是字错率。保存的模型是静态模型,方便预测。
import paddle
import numpy as np
import os
from datetime import datetime
from model import Model
from decoder import ctc_greedy_decoder, label_to_string, cer
from paddle.io import DataLoader
from data import CustomDataset
from visualdl import LogWriter
from paddle.static import InputSpec
train_data_list_path = 'dataset/train.txt'
test_data_list_path = 'dataset/test.txt'
voc_path = 'dataset/vocabulary.txt'
save_model = 'models/model'
batch_size = 32
pretrained_model = None
num_epoch = 100
learning_rate = 1e-3
writer = LogWriter(logdir='log')
def train():
# 获取训练数据
train_dataset = CustomDataset(train_data_list_path, voc_path)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# 获取测试数据
test_dataset = CustomDataset(test_data_list_path, voc_path)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size)
# 获取模型
model = Model(train_dataset.vocabulary)
paddle.summary(model, input_size=(batch_size, 1, 27, 72))
# 设置优化方法
boundaries = [10, 20, 50]
lr = [0.1 ** l * learning_rate for l in range(len(boundaries) + 1)]
scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=boundaries, values=lr, verbose=False)
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=scheduler)
# 获取损失函数
ctc_loss = paddle.nn.CTCLoss(blank=len(train_dataset.vocabulary))
# 加载预训练模型
if pretrained_model is not None:
model.set_state_dict(paddle.load(os.path.join(pretrained_model, 'model.pdparams')))
optimizer.set_state_dict(paddle.load(os.path.join(pretrained_model, 'optimizer.pdopt')))
train_step = 0
test_step = 0
# 开始训练
for epoch in range(num_epoch):
for batch_id, (inputs, labels) in enumerate(train_loader()):
out = model(inputs)
out = paddle.transpose(out, perm=[1, 0, 2])
input_lengths = paddle.full(shape=[out.shape[1]], fill_value=out.shape[0], dtype="int64")
label_lengths = paddle.full(shape=[out.shape[1]], fill_value=4, dtype="int64")
# 计算损失
loss = ctc_loss(out, labels, input_lengths, label_lengths)
loss.backward()
optimizer.step()
optimizer.clear_grad()
# 多卡训练只使用一个进程打印
if batch_id % 100 == 0:
print('[%s] Train epoch %d, batch %d, loss: %f' % (datetime.now(), epoch, batch_id, loss))
writer.add_scalar('Train loss', loss, train_step)
train_step += 1
if (epoch % 10 == 0 and epoch != 0) or epoch == num_epoch:
# 执行评估
model.eval()
cer = evaluate(model, test_loader, train_dataset.vocabulary)
print('[%s] Test epoch %d, cer: %f' % (datetime.now(), epoch, cer))
writer.add_scalar('Test cer', cer, test_step)
test_step += 1
model.train()
# 记录学习率
writer.add_scalar('Learning rate', scheduler.last_lr, epoch)
scheduler.step()
# 保存模型
paddle.jit.save(layer=model, path=save_model, input_spec=[InputSpec(shape=[None, 1, 27, 72], dtype='float32')])
# 评估模型
def evaluate(model, test_loader, vocabulary):
cer_result = []
for batch_id, (inputs, labels) in enumerate(test_loader()):
# 执行识别
outs = model(inputs)
outs = paddle.nn.functional.softmax(outs)
# 解码获取识别结果
labelss = []
out_strings = []
for out in outs:
out_string = ctc_greedy_decoder(out, vocabulary)
out_strings.append(out_string)
for label in labels:
labels = label_to_string(label, vocabulary)
labelss.append(labels)
for out_string, label in zip(*(out_strings, labelss)):
print(label, out_string)
# 计算字错率
c = cer(out_string, label) / float(len(label))
cer_result.append(c)
cer_result = float(np.mean(cer_result))
return cer_result
train()
预测
使用训练好的模型识别验证码图片。
import numpy as np
import paddle
from data import process
from decoder import ctc_greedy_decoder
with open('dataset/vocabulary.txt', 'r', encoding='utf-8') as f:
vocabulary = f.readlines()
vocabulary = [v.replace('\n', '') for v in vocabulary]
save_model = 'models/model'
model = paddle.jit.load(save_model)
model.eval()
def infer(path):
data = process(path)
data = data[np.newaxis, :]
data = paddle.to_tensor(data, dtype='float32')
# 执行识别
out = model(data)
out = paddle.nn.functional.softmax(out)[0]
# 解码获取识别结果
out_string = ctc_greedy_decoder(out, vocabulary)
print('预测结果:%s' % out_string)
if __name__ == '__main__':
image_path = 'dataset/test.png'
infer(image_path)
标题:基于PaddlePaddle2.0验证码端到端的识别
作者:yeyupiaoling
地址:https://yeyupiaoling.cn/articles/1642836291979.html