百度機器學習訓練營筆記——問題回答

該代碼使用PaddlePaddle構建了一個卷積神經網絡來處理CIFAR-10數據集。網絡包含3層卷積池化和一層全連接層,沒有使用BN層。 **網絡結構分析:** 1. 輸入圖像尺寸爲(128, 3, 32, 32)。 2. 第一、二層卷積核大小5x5,第一層輸出(128, 20, 28, 28),第二層輸出(128, 50, 14, 14);每層卷積輸出的參數量分別爲1500和25000。

閱讀全文
百度機器學習訓練營筆記——數學基礎

這段內容主要講解了神經網絡的基本概念和一些重要的基礎概念,包括但不限於線性迴歸、梯度下降等算法以及它們的原理與應用。另外還詳細解釋了反向傳播、激活函數(如Sigmoid、Tanh和ReLU)的概念,並通過代碼示例進行了圖表展示。下面是對這些內容的一個簡要總結: 1. **線性迴歸**:一種簡單的機器學習方法,用於預測連續值。 2. **梯度下降**:優化算法之一,用於求解最小化損失函數的參數。

閱讀全文
基於PaddlePaddle實現的DeepSpeech2端到端中文語音識模型

這個教程詳細地介紹瞭如何使用PaddlePaddle進行語音識別,並提供了一系列的操作指南,幫助開發者從數據準備到模型訓練和上線部署。下面是對每個步驟的一個簡要總結: 1. **環境配置**:確保開發環境已經安裝了必要的軟件和庫,包括PaddlePaddle。 2. **數據準備**: - 下載並解壓語音識別數據集。 - 處理音頻文件,如去噪、降採樣等。 - 對文本進行

閱讀全文