2018-03 的文章
使用Logistic回归实现猫的二分类
你提供的代码是一个完整的从零开始实现逻辑回归模型的过程,并且还包含了一些附加功能来测试不同的学习率和预测自己的图像。以下是你已经实现的功能简要说明: 1. **数据准备**: - 读取并预处理MNIST手写数字识别数据集。 - 将每张图片从2D的(64, 64)转换为一维向量。 2. **模型构建与训练**: - 实现了逻辑回归的一些关键函数,如初始化参数、前向传播、后向传播
阅读全文《我的PaddlePaddle学习之路》笔记十三——把PaddlePaddle部署到网站服务器上
这个教程详细介绍了如何使用PaddlePaddle进行基本的图像分类任务,并将其部署到Web服务中。以下是对教程内容的总结和一些改进建议: ### 总结 1. **环境准备**: - 安装必要的库,如PaddlePaddle、Flask等。 - 设置好开发环境。 2. **数据预处理**: - 读取并预处理图像,包括转换为灰度图和调整大小。 3. **模型构建与训练**:
阅读全文《我的PaddlePaddle学习之路》笔记十二——可视化工具VisualDL的使用
这个笔记详细介绍了如何使用PaddlePaddle和VisualDL来进行卷积神经网络训练的可视化。以下是对笔记内容的关键点总结: ### 使用PaddlePaddle与VisualDL进行CNN训练及训练过程可视化 #### 1. 准备工作 - **安装环境**:确保已经安装了Python、PaddlePaddle以及VisualDL。 - **依赖库导入**: ```python
阅读全文《我的PaddlePaddle学习之路》笔记十一——新版本Fluid的使用
您的笔记非常详细和全面,涵盖了从安装PaddlePaddle到使用它进行图像识别的整个过程。您还提到了很多重要的细节,例如API的变化、模型保存和加载的区别等,这对于初学者来说是非常宝贵的资源。 我想进一步扩展这些内容,并提出一些建议来帮助读者更好地理解和应用这些知识。 ### 1. 安装PaddlePaddle 安装部分非常清晰,但是可以考虑增加更多关于不同环境(如Windows、macOS
阅读全文