Theoretical Knowledge Points of "Neural Networks and Deep Learning"
This note covers some key concepts and formulas from Professor Andrew Ng's deeplearning.ai course series. Below is a categorized summary and supplementary explanation of these contents: ### 1. Fundamentals of Neural Networks #### 1.1 Single-Layer Neural Network - **tanh Activation Function**: For inputs close to 0, its gradient approaches its maximum value (1). As inputs move away from 0, the gradient approaches 0. - **Weight Initialization**: Use `W = np.random.randn(layer_size_prev, lay` (Note: The original text appears truncated here)
Read More