基于ECAPA-TDNN的声纹识别系统实现

一、项目概述

本项目实现了基于ECAPA-TDNN模型的声纹识别系统,支持音频预处理、模型训练、声纹对比和识别功能。通过Mel频谱特征提取、数据增强和ArcFace损失函数优化,系统能够有效区分不同说话人,实现高准确率的声纹识别。

二、环境配置

  1. 依赖库
   pip install torch torchaudio soundfile librosa matplotlib visualdl scikit-learn numpy
  1. 数据集准备
    - 使用zhvoice数据集,包含3242个说话人及113万+条语音。
    - 数据格式:wav音频文件,命名格式为<说话人ID>/<文件名>.wav

三、核心代码实现

1. 音频预处理与特征提取
import torch
import torchaudio
import numpy as np
from scipy.io import wavfile

class AudioProcessor:
    def __init__(self, sample_rate=16000, n_fft=512, hop_length=160, n_mels=80):
        self.sample_rate = sample_rate
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.n_mels = n_mels
        self.transform = torchaudio.transforms.MelSpectrogram(
            sample_rate=sample_rate,
            n_fft=n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
            f_min=50,
            f_max=14000
        )

    def load_audio(self, file_path):
        # 读取音频并重采样
        sr, audio = wavfile.read(file_path)
        if sr != self.sample_rate:
            audio = torchaudio.transforms.Resample(sr, self.sample_rate)(torch.tensor(audio).float())
        return audio

    def extract_feature(self, audio):
        # 提取Mel频谱特征
        mel = self.transform(audio)
        mel_db = torchaudio.transforms.AmplitudeToDB()(mel)
        return mel_db.numpy().T  # 转置为 (n_mels, time_steps)
2. 数据增强配置
import random
import librosa

class Augmenter:
    def __init__(self, noise_path=None):
        self.noise_path = noise_path
        self.noises = []
        if noise_path:
            # 加载背景噪声库
            for file in os.listdir(noise_path):
                if file.endswith('.wav'):
                    sr, noise = wavfile.read(os.path.join(noise_path, file))
                    self.noises.append(noise.astype(np.float32) / 32767)

    def add_noise(self, audio, snr_range=(10, 30)):
        if not self.noises or random.random() > 0.5:
            return audio
        snr = random.uniform(*snr_range)
        noise = random.choice(self.noises)
        audio_length = len(audio)
        noise_length = len(noise)
        if noise_length < audio_length:
            noise = np.tile(noise, (audio_length // noise_length + 1))[:audio_length]
        noise = noise[:audio_length]
        noise_power = np.sum(noise ** 2) / audio_length
        audio_power = np.sum(audio ** 2) / audio_length
        scale = np.sqrt(audio_power / (10 ** (snr / 10)) / noise_power)
        return audio + scale * noise

    def time_stretch(self, audio, rate_range=(0.9, 1.1)):
        if random.random() > 0.5:
            rate = random.uniform(*rate_range)
            return librosa.effects.time_stretch(audio, rate)
        return audio
3. 模型定义(ECAPA-TDNN)
import torch.nn as nn
import torch.nn.functional as F

class ECAPA_TDNN(nn.Module):
    def __init__(self, input_channels=80, num_speakers=3242, lin_neurons=192):
        super().__init__()
        # 初始化TDNN层
        self.convs = nn.ModuleList([
            nn.Conv1d(input_channels, 512, kernel_size=5, dilation=1, padding=2),
            nn.Conv1d(512, 512, kernel_size=3, dilation=2, padding=2),
            nn.Conv1d(512, 512, kernel_size=3, dilation=3, padding=3),
            nn.Conv1d(512, 512, kernel_size=3, dilation=4, padding=4),
            nn.Conv1d(512, 1536, kernel_size=1, dilation=1, padding=0),
        ])
        self.bn = nn.BatchNorm1d(1536)
        self.pooling = nn.AdaptiveAvgPool1d(1)
        self.fc = nn.Linear(1536, lin_neurons)
        self.arcface = ArcFace(num_features=lin_neurons, num_classes=num_speakers)

    def forward(self, x, labels=None):
        x = x.unsqueeze(1)  # [B, 1, T] -> [B, C, T]
        for conv in self.convs[:-1]:
            x = conv(x)
            x = F.relu(x)
        x = self.convs[-1](x)
        x = self.bn(x)
        x = F.relu(x)
        x = self.pooling(x).squeeze(-1)  # [B, 1536]
        x = self.fc(x)
        x = F.normalize(x, p=2, dim=1)  # 特征归一化
        if labels is not None:
            return self.arcface(x, labels)
        return x
4. ArcFace损失函数
class ArcFace(nn.Module):
    def __init__(self, num_features, num_classes, s=30.0, m=0.5):
        super().__init__()
        self.fc = nn.Linear(num_features, num_classes, bias=False)
        self.s = s  # 缩放因子
        self.m = m  # 角度间隔
        self.weight = self.fc.weight

    def forward(self, x, labels):
        cos_theta = F.linear(F.normalize(x), F.normalize(self.weight))  # 余弦相似度
        theta = torch.acos(torch.clamp(cos_theta, -1.0 + 1e-7, 1.0 - 1e-7))  # 角度计算
        theta = theta + self.m  # 添加角度间隔
        cos_theta_m = torch.cos(theta)
        # 替换同类别样本的余弦值
        one_hot = torch.zeros_like(cos_theta)
        one_hot.scatter_(1, labels.view(-1, 1), 1.0)
        output = (cos_theta_m - cos_theta) * one_hot + cos_theta
        output = self.s * output
        return F.cross_entropy(output, labels)
5. 训练主函数
def train(model, train_loader, optimizer, criterion, device):
    model.train()
    total_loss = 0.0
    for batch in train_loader:
        audio, labels = batch
        audio = audio.to(device)
        labels = labels.to(device)
        optimizer.zero_grad()
        loss = criterion(model(audio, labels), labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    return total_loss / len(train_loader)
6. 声纹对比与识别
def extract_feature_from_file(audio_processor, file_path):
    audio = audio_processor.load_audio(file_path)
    return audio_processor.extract_feature(audio)

def compare_speakers(feature1, feature2):
    return np.dot(feature1, feature2) / (np.linalg.norm(feature1) * np.linalg.norm(feature2))

def recognize(speaker_db, input_audio_path, threshold=0.7):
    input_feature = extract_feature_from_file(audio_processor, input_audio_path)
    max_sim = -1
    recognized = None
    for name, feature in speaker_db.items():
        sim = compare_speakers(input_feature, feature)
        if sim > max_sim:
            max_sim = sim
            recognized = name if sim > threshold else None
    return recognized, max_sim

四、运行流程

  1. 数据准备
   python create_data.py  # 生成训练/测试列表
  1. 模型训练
   python train.py --config configs/ecapa_tdnn.yml
  1. 评估模型
   python eval.py --model_path models/best_model.pth
  1. 声纹识别
   python infer_recognition.py  # 支持录音识别

五、关键配置参数

  • 预处理配置configs/preprocess.yaml):
  sample_rate: 16000
  n_fft: 512
  hop_length: 160
  n_mels: 80
  • 训练配置configs/train.yaml):
  batch_size: 64
  epochs: 30
  lr: 0.001
  weight_decay: 1e-6
  device: cuda

六、性能优化

  1. 数据增强:通过SpecAugment、噪声添加、时间拉伸等提升模型鲁棒性。
  2. 特征归一化:确保特征向量在L2范数下归一化,便于余弦相似度计算。
  3. 模型优化:使用1维卷积和自适应池化减少参数量,加速推理。

七、扩展功能

  • 多模型支持:提供TDNN、ResNetSE等替换ECAPA-TDNN。
  • Web部署:通过FastAPI封装识别API,实现跨平台调用。
  • 语音合成攻击检测:结合频谱特征分析生成对抗样本。

八、参考资料

  1. ECAPA-TDNN论文
  2. PaddleSpeech开源项目
  3. PPASR语音识别项目

通过上述实现,系统可高效完成声纹特征提取、模型训练及识别任务,适用于门禁、身份验证等场景。如需进一步优化,可考虑引入元学习或多模态融合提升抗干扰能力。

Xiaoye