2019-04 的文章
基于PaddlePaddle实现人脸关键点检测模型MTCNN
文章介绍了MTCNN(多任务卷积神经网络)用于人脸检测的过程,包括P-Net、R-Net和O-Net三个层级。P-Net用于生成候选窗口,R-Net进行精确选择并回归边界框和关键点,而O-Net则进一步细化输出最终的边界框与关键点位置。 项目源码托管在GitHub上使用PaddlePaddle 2.0.1实现。训练模型分为三步:首先是训练PNet生成候选窗口;接着使用PNet数据训练RNet进行
阅读全文文章介绍了MTCNN(多任务卷积神经网络)用于人脸检测的过程,包括P-Net、R-Net和O-Net三个层级。P-Net用于生成候选窗口,R-Net进行精确选择并回归边界框和关键点,而O-Net则进一步细化输出最终的边界框与关键点位置。 项目源码托管在GitHub上使用PaddlePaddle 2.0.1实现。训练模型分为三步:首先是训练PNet生成候选窗口;接着使用PNet数据训练RNet进行
阅读全文