快速入門Pytorch:張量維度變換與常用操作
這篇文章介紹了Pytorch張量的核心知識,包括基礎、維度變換、常用操作及練習建議。張量是Pytorch存儲數據的基本結構,類似NumPy數組,支持GPU加速和自動求導。創建方式有:從列表/數值用`torch.tensor()`,從NumPy數組用`torch.from_numpy()`,或用內置函數生成全0/1/隨機張量。 維度變換是關鍵操作:`reshape()`靈活調整形狀(元素總數不變),`squeeze()`去掉單維度,`unsqueeze()`增加單維度,`transpose()`和`permute()`交換維度。常用操作包括基礎算術運算、矩陣乘法`matmul()`、廣播機制(自動擴展維度運算)及聚合操作(`sum()`/`mean()`/`max()`等)。 文章建議通過練習鞏固張量操作,如維度調整、廣播機制和維度交換,以掌握“形狀語言”,爲後續模型構建奠定基礎。
閱讀全文零基礎學Pytorch:從張量到神經網絡的入門指南
這篇文章介紹了PyTorch的核心內容及基礎應用。PyTorch以靈活直觀、語法接近Python著稱,適合深度學習初學者,支持GPU加速和自動求導。核心內容包括: 1. **張量(Tensor)**:基礎數據結構,類似多維數組,支持從數據、全0/1、隨機數創建,可與NumPy互轉,支持形狀操作、算術運算(元素級/矩陣)及設備轉換(CPU/GPU)。 2. **自動求導**:通過`autograd`實現自動微分,設置`requires_grad=True`的張量會被追蹤計算歷史,調用`backward()`自動計算梯度,如函數`y=x²+3x-5`在`x=2`時梯度爲7.0。 3. **神經網絡構建**:基於`torch.nn`模塊,包含線性層(`nn.Linear`)、激活函數、損失函數(如MSE)和優化器(如SGD),支持自定義模型類和`nn.Sequential`組合。 4. **實戰線性迴歸**:生成模擬數據`y=2x+3+噪聲`,定義線性模型、MSE損失、
閱讀全文