基於PaddlePaddle實現的目標檢測模型PP-YOLOE
這段文檔詳細地介紹瞭如何使用 PaddlePaddle 實現目標檢測模型 PP-YOLOE 的訓練、評估、導出以及預測過程,並提供了多種部署方式,包括 Inference 預測接口、ONNX 接口和 Android 設備上的預測。以下是對各個部分的總結: ### 1. 訓練 - **單卡訓練**:使用 `python train.py --model_type=M --num_classes=8
閱讀全文《我的PaddlePaddle學習之路》筆記十——自定義圖像數據集實現目標檢測
從你的筆記中,我們可以看到你詳細地介紹了使用PaddlePaddle實現目標檢測的過程。以下是對筆記中關鍵點的總結和一些補充: ### 目標檢測流程概述 1. **數據預處理**:數據集是Pascal VOC 2012版本,包含車牌識別訓練數據集。 2. **訓練模型**: - 構建VGG-16網絡結構。 - 定義Loss函數和優化器。 3. **評估與推理**: - 使用測試
閱讀全文《我的PaddlePaddle學習之路》筆記九——使用VOC數據集的實現目標檢測
### 第十章:自定義圖像數據集實現目標檢測 在PaddlePaddle中,我們不僅可以通過預訓練模型快速部署目標檢測任務,還可以通過自定義數據集來訓練自己特有的目標檢測模型。本章節將介紹如何使用PaddlePaddle進行目標檢測。 #### 1. 準備環境 確保已經安裝了PaddlePaddle,並且熟悉基本的PaddlePaddle操作(包括安裝、配置等)。可以通過以下命令檢查是否已成功
閱讀全文