我的PaddlePaddle学习之路笔记四——自定义图像分类(基于VGG)¶
前言¶
在之前的文章中,我们已经学习了如何使用PaddlePaddle实现简单的图像分类模型。这篇文章将介绍如何使用自定义数据集,结合VGG神经网络进行图像分类。我们将详细讲解从数据准备、模型构建到训练和预测的完整流程。
数据准备¶
1. 数据结构¶
我们使用的数据集结构如下(以蔬菜分类为例):
vegetables/
├── cuke/
│ ├── 1515826971850.jpg
│ ├── 1515826971851.jpg
│ └── ...
├── lettuce/
│ ├── 1515827012863.jpg
│ ├── 1515827012864.jpg
│ └── ...
└── lotus_root/
├── 1515827059200.jpg
├── 1515827059201.jpg
└── ...
每个子文件夹代表一个类别,例如cuke、lettuce、lotus_root分别对应黄瓜、生菜、莲藕三类蔬菜。
2. 生成图像列表¶
我们需要编写一个Python脚本,将每个图像的路径和对应的标签整理成训练列表和测试列表。
# coding=utf-8
import os
import json
class CreateDataList:
def __init__(self):
pass
def createDataList(self, data_root_path):
# 把生产的数据列表都放在自己的总类别文件夹中
data_list_path = ''
# 所有类别的信息
class_detail = []
# 获取所有类别
class_dirs = os.listdir(data_root_path)
# 类别标签
class_label = 0
# 获取总类别的名称
father_paths = data_root_path.split('/')
while True:
if father_paths[father_paths.__len__() - 1] == '':
del father_paths[father_paths.__len__() - 1]
else:
break
father_path = father_paths[father_paths.__len__() - 1]
all_class_images = 0
# 读取每个类别
for class_dir in class_dirs:
# 每个类别的信息
class_detail_list = {}
test_sum = 0
trainer_sum = 0
# 把生产的数据列表都放在自己的总类别文件夹中
data_list_path = "../data/%s/" % father_path
# 统计每个类别有多少张图片
class_sum = 0
# 获取类别路径
path = data_root_path + "/" + class_dir
# 获取所有图片
img_paths = os.listdir(path)
for img_path in img_paths:
# 每张图片的路径
name_path = path + '/' + img_path
# 如果不存在这个文件夹,就创建
isexist = os.path.exists(data_list_path)
if not isexist:
os.makedirs(data_list_path)
# 每10张图片取一个做测试数据
if class_sum % 10 == 0:
test_sum += 1
with open(data_list_path + "test.list", 'a') as f:
f.write(name_path + "\t%d" % class_label + "\n")
else:
trainer_sum += 1
with open(data_list_path + "trainer.list", 'a') as f:
f.write(name_path + "\t%d" % class_label + "\n")
class_sum += 1
all_class_images += 1
class_label += 1
# 说明的json文件的class_detail数据
class_detail_list['class_name'] = class_dir
class_detail_list['class_label'] = class_label
class_detail_list['class_test_images'] = test_sum
class_detail_list['class_trainer_images'] = trainer_sum
class_detail.append(class_detail_list)
# 获取类别数量
all_class_sum = class_dirs.__len__()
# 说明的json文件信息
readjson = {}
readjson['all_class_name'] = father_path
readjson['all_class_sum'] = all_class_sum
readjson['all_class_images'] = all_class_images
readjson['class_detail'] = class_detail
jsons = json.dumps(readjson, sort_keys=True, indent=4, separators=(',', ': '))
with open(data_list_path + "readme.json",'w') as f:
f.write(jsons)
if __name__ == '__main__':
createDataList = CreateDataList()
createDataList.createDataList('../images/vegetables')
运行该脚本后,会在data文件夹中生成一个单独的大类文件夹(例如vegetables),其中包含三个文件:
- trainer.list:用于训练的图像列表
- test.list:用于测试的图像列表
- readme.json:数据集的说明文件,包含类别数量、每个类别的图像数量等信息
读取数据¶
接下来,我们需要编写一个数据读取器,用于读取图像列表并生成PaddlePaddle所需的reader。
# coding=utf-8
import os
import json
import paddle.v2 as paddle
class MyReader:
def __init__(self, imageSize):
self.imageSize = imageSize
def train_mapper(self, sample):
img_path, lab = sample
img = paddle.image.load_image(img_path)
img = paddle.image.simple_transform(img, 70, self.imageSize, True)
return img.flatten().astype('float32'), int(lab)
def test_mapper(self, sample):
img_path, lab = sample
img = paddle.image.load_image(img_path)
img = paddle.image.simple_transform(img, 70, self.imageSize, False)
return img.flatten().astype('float32'), int(lab)
def train_reader(self, train_list):
def reader():
with open(train_list, 'r') as f:
lines = [line.strip() for line in f]
for line in lines:
img_path, lab = line.strip().split('\t')
yield img_path, int(lab)
return paddle.reader.xmap_readers(self.train_mapper, reader, cpu_count(), 1024)
def test_reader(self, test_list):
def reader():
with open(test_list, 'r') as f:
lines = [line.strip() for line in f]
for line in lines:
img_path, lab = line.strip().split('\t')
yield img_path, int(lab)
return paddle.reader.xmap_readers(self.test_mapper, reader, cpu_count(), 1024)
这里使用了paddle.image.simple_transform函数对图像进行预处理,包括调整大小和随机裁剪(训练时使用True,测试时使用False)。
定义神经网络¶
我们使用VGG网络来构建图像分类模型。由于数据集较小,我们关闭了Batch Normalization层(conv_with_batchnorm=False),否则可能会因为过拟合导致模型无法收敛。
# coding:utf-8
import paddle.v2 as paddle
def vgg_bn_drop(datadim, type_size):
# 获取输入数据
image = paddle.layer.data(name="image",
type=paddle.data_type.dense_vector(datadim))
def conv_block(ipt, num_filter, groups, dropouts, num_channels=None):
return paddle.networks.img_conv_group(
input=ipt,
num_channels=num_channels,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act=paddle.activation.Relu(),
conv_with_batchnorm=False,
conv_batchnorm_drop_rate=dropouts,
pool_type=paddle.pooling.Max())
conv1 = conv_block(image, 64, 2, [0.3, 0], 3)
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5)
fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear())
fc2 = paddle.layer.fc(input=fc1, size=512, act=paddle.activation.Linear())
out = paddle.layer.fc(input=fc2, size=type_size, act=paddle.activation.Softmax())
return out
使用PaddlePaddle开始训练¶
现在,我们编写训练代码,将前面定义的数据读取器和神经网络结合起来,进行模型训练。
# coding:utf-8
import os
import sys
import paddle.v2 as paddle
from MyReader import MyReader
from vgg import vgg_bn_drop
class PaddleUtil:
def __init__(self):
# 初始化paddle,使用CPU
paddle.init(use_gpu=False, trainer_count=2)
def get_parameters(self, parameters_path=None, cost=None):
if not parameters_path:
if not cost:
raise NameError('请输入cost参数')
parameters = paddle.parameters.create(cost)
return parameters
else:
try:
with open(parameters_path, 'r') as f:
parameters = paddle.parameters.Parameters.from_tar(f)
return parameters
except Exception as e:
raise NameError("参数文件错误: %s" % e)
def get_trainer(self, datadim, type_size, parameters_path):
# 定义标签
label = paddle.layer.data(name="label",
type=paddle.data_type.integer_value(type_size))
# 获取VGG网络输出
out = vgg_bn_drop(datadim=datadim, type_size=type_size)
# 定义损失函数
cost = paddle.layer.classification_cost(input=out, label=label)
# 获取参数
parameters = self.get_parameters(parameters_path=parameters_path, cost=cost)
# 定义优化器
optimizer = paddle.optimizer.Momentum(
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128),
learning_rate=0.001 / 128,
learning_rate_decay_a=0.1,
learning_rate_decay_b=128000 * 35,
learning_rate_schedule="discexp", )
# 创建训练器
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
return trainer
def start_trainer(self, trainer, num_passes, save_parameters_name, trainer_reader, test_reader):
# 定义训练数据
reader = paddle.batch(reader=paddle.reader.shuffle(reader=trainer_reader,
buf_size=50000),
batch_size=128)
# 确保保存模型的目录存在
father_path = save_parameters_name[:save_parameters_name.rfind("/")]
if not os.path.exists(father_path):
os.makedirs(father_path)
# 定义数据输入关系
feeding = {"image": 0, "label": 1}
# 定义训练事件处理
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "\nPass %d, Batch %d, Cost %f, Error %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics['classification_error_evaluator'])
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
# 保存参数
with open(save_parameters_name, 'w') as f:
trainer.save_parameter_to_tar(f)
# 测试
result = trainer.test(reader=paddle.batch(reader=test_reader,
batch_size=128),
feeding=feeding)
print "\nTest Pass %d, Classification_Error %s" % (event.pass_id, result.metrics['classification_error_evaluator'])
# 开始训练
trainer.train(reader=reader,
num_passes=num_passes,
event_handler=event_handler,
feeding=feeding)
if __name__ == '__main__':
type_size = 3 # 类别数量
imageSize = 64 # 图像大小
all_class_name = 'vegetables' # 类别名称
parameters_path = "../model/model.tar" # 模型保存路径
datadim = 3 * imageSize * imageSize # 数据维度
paddleUtil = PaddleUtil()
myReader = MyReader(imageSize=imageSize)
# 获取训练器
trainer = paddleUtil.get_trainer(datadim=datadim, type_size=type_size, parameters_path=None)
# 获取训练和测试数据
trainer_reader = myReader.train_reader(train_list="../data/%s/trainer.list" % all_class_name)
test_reader = myReader.test_reader(test_list="../data/%s/test.list" % all_class_name)
# 开始训练
paddleUtil.start_trainer(trainer=trainer, num_passes=100, save_parameters_name=parameters_path,
trainer_reader=trainer_reader, test_reader=test_reader)
使用PaddlePaddle预测¶
训练完成后,我们可以使用训练好的模型对新图像进行预测。
# coding:utf-8
import numpy as np
import paddle.v2 as paddle
from vgg import vgg_bn_drop
def get_parameters(parameters_path):
with open(parameters_path, 'r') as f:
parameters = paddle.parameters.Parameters.from_tar(f)
return parameters
def to_prediction(image_paths, parameters, out, imageSize):
test_data = []
for image_path in image_paths:
img = paddle.image.load_and_transform(image_path, 70, imageSize, False)
test_data.append((img.flatten().astype('float32'),))
probs = paddle.infer(output_layer=out,
parameters=parameters,
input=test_data)
lab = np.argsort(-probs)
all_result = []
for i in range(len(lab)):
all_result.append([lab[i][0], probs[i][lab[i][0]]])
return all_result
if __name__ == '__main__':
paddle.init(use_gpu=False, trainer_count=2)
type_size = 3
imageSize = 64
parameters_path = "../model/model.tar"
datadim = 3 * imageSize * imageSize
image_path = [
"../images/vegetables/cuke/1515826971850.jpg",
"../images/vegetables/lettuce/1515827012863.jpg",
"../images/vegetables/lotus_root/1515827059200.jpg"
]
out = vgg_bn_drop(datadim=datadim, type_size=type_size)
parameters = get_parameters(parameters_path=parameters_path)
all_result = to_prediction(image_paths=image_path, parameters=parameters, out=out, imageSize=imageSize)
for result in all_result:
print "预测结果: %d, 可信度: %.6f" % (result[0], result[1])
下载图像(可选)¶
如果需要从百度图片下载图像,可以使用以下脚本:
```python
coding=utf-8¶
import re
import uuid
import requests
import os
class DownloadImages:
def init(self, download_max, key_word):
self.download_sum = 0
self.download_max = download_max
self.key_word = key_word
self.save_path = ‘../images/download/’ + key_word
def start_download(self):
self.download_sum = 0
gsm = 80
while self.download_sum < self.download_max:
url = 'http://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&' \
'word=' + self.key_word + '&pn=' + str(self.download_sum) + '&gsm=' + str(gsm)
result = requests.get(url)
self.downloadImages(result.text)
print('下载完成')
def downloadImages(self, html):
img_urls = re.findall('"objURL":"(.*?)"', html, re.S)
for img_url in img_urls:
if self.download_sum >= self.download_max:
break
try:
pic = requests.get(img_url, timeout=50)
pic_name = self.save_path + '/' + str(uuid.uuid1())