pandas保姆級教程:缺失值處理從入門到實踐
這篇文章介紹了數據分析中缺失值的處理方法。缺失值指數據集中無有效值,pandas中以`NaN`表示。處理前需先檢查:`isnull()`標記缺失值,`isnull().sum()`統計各列缺失數,`info()`查看整體缺失分佈。 處理策略分刪除和填充:刪除用`dropna()`,按行(默認)或列刪除含缺失值的記錄;填充用`fillna()`,包括固定值(如0)、統計量(均值/中位數適合數值,衆數適合分類)、向前/向後填充(`ffill/bfill`,適用於時間序列)。 案例以電商訂單數據爲例,先檢查缺失值,再用均值填充“金額”列,衆數填充“支付方式”列。處理核心步驟爲:檢查缺失→選策略(極少值刪除,多值或關鍵數據填充)→驗證結果,需結合數據特點靈活選擇方法。
閱讀全文