Learning PyTorch from Scratch: A Beginner's Guide from Tensors to Neural Networks
This article introduces the core content and basic applications of PyTorch. Renowned for its flexibility, intuitiveness, and Python-like syntax, PyTorch is suitable for deep learning beginners and supports GPU acceleration and automatic differentiation. The core content includes: 1. **Tensor**: The basic data structure, similar to a multi-dimensional array. It supports creation from data, all-zero/all-one, random numbers, conversion with NumPy, shape operations, arithmetic operations (element-wise/matrix), and device conversion (CPU/GPU). 2. **Automatic Differentiation**: Implemented through `autograd`. Tensors with `requires_grad=True` will track their computation history, and calling `backward()` automatically computes gradients. For example, for the function \( y = x^2 + 3x - 5 \), the gradient at \( x = 2 \) is 7.0. 3. **Neural Network Construction**: Based on the `torch.nn` module, it includes linear layers (`nn.Linear`), activation functions, loss functions (e.g., MSE), and optimizers (e.g., SGD). It supports custom model classes and composition with `nn.Sequential`. 4. **Practical Linear Regression**: Generates simulated data \( y = 2x + 3 + \text{noise} \), defines a linear model, MSE loss,
Read More