Implementing the Merge Sort Algorithm in C++

Merge sort is based on the divide-and-conquer principle, with the core being "divide-merge": first recursively split the array into individual elements (where subarrays are ordered), then merge two ordered subarrays into a larger ordered array. **Divide process**: Recursively split the array from the middle until each subarray contains only one element. **Merge process**: Compare elements from two ordered subarrays, take the smaller value and place it in the result array sequentially, then handle the remaining elements. The C++ implementation includes two core functions: `mergeSort` for recursively dividing the array, and `merge` for merging two ordered subarrays. The time complexity is O(n log n), and the space complexity is O(n) (due to the need for a temporary array). Merge sort is stable and efficient, making it suitable for sorting large-scale data. In the example, the array `[5,3,8,6,2,7,1,4]` is sorted into the ordered array `[1,2,3,4,5,6,7,8]` through division and merging, verifying the algorithm's correctness.

Read More
Implementing the Merge Sort Algorithm in Java

Merge sort is an efficient sorting algorithm based on the divide-and-conquer paradigm, with three core steps: divide, conquer, and merge. It recursively splits the array into single-element subarrays, sorts these subarrays, and finally merges two ordered subarrays into a fully ordered array. In Java implementation, the `mergeSort` method recursively divides the array into left and right halves, sorts each half, and then calls the `merge` method to combine them. The `merge` method uses three pointers to traverse the left and right subarrays, compares elements, and fills the result array, while directly copying remaining elements. Algorithm complexity: Time complexity is O(n log n) (each merge operation takes O(n) time, with log n recursive levels), space complexity is O(n) (requires extra space for storing merged results), and it is a stable sort (relative order of equal elements is preserved). Merge sort has a clear logic and is suitable for large-scale data sorting. It serves as a classic example of divide-and-conquer algorithms, efficiently sorting by recursively splitting and merging ordered subarrays.

Read More